

# M100-2xx

Программируемый логический контроллер повышенной надежности

# **Инструкция по эксплуатации** АППАРАТНАЯ РЕВИЗИЯ 2

#### Оглавление

| Вступление                                                                                                                | 2  |
|---------------------------------------------------------------------------------------------------------------------------|----|
| Сведения о безопасности                                                                                                   |    |
| Краткий обзор                                                                                                             | 3  |
| Модификации контроллера М100                                                                                              |    |
| Технические данные                                                                                                        |    |
| Расположение элементов                                                                                                    | 7  |
| Схема терминалов                                                                                                          | 8  |
| Работа в сети                                                                                                             | 9  |
| Аварийный светодиод                                                                                                       | 9  |
| Схема подачи питания на контроллер                                                                                        | 10 |
| Схема подключения аналоговых выходов в режиме пропорционального управления напряжением от 0В до 10В. Модификация М100-2Ах | 11 |
| Схема подключения аналоговых выходов в режиме пропорционального управления                                                |    |
| напряжением от ОВ до 10В. Модификация М100-2Вх                                                                            | 12 |
| Схема подключения аналоговых выходов в режиме ШИМ                                                                         | 13 |
| Схема подключения дискретных выходов                                                                                      | 14 |
| Подключение универсальных входов                                                                                          |    |
| Гарантийные обязательства                                                                                                 |    |
|                                                                                                                           |    |

# Вступление

Дорогие коллеги!

Коллектив Zentec благодарит вас за выбор программируемого логического контроллера м100

Это изделие идеально подойдет для ваших проектов автоматизации.

M100 производится из самых современных компонентов и материалов на заводе Zentec в Республике Беларусь.

Все контроллеры проходят 100% выходной контроль, что позволяет нам быть уверенными в безупречном качестве производимой продукции.

# Сведения о безопасности

К работе с устройством, его подключением, настройкой и т. п. допускается только сертифицированный специалист, прошедший необходимое обучение и имеющий допуски к работе с электротехническим оборудованием.

Необходимо соблюдать требования электробезопасности, регламентированные действующими документами для конкретного региона или страны.

#### Важное замечание:

Информация, содержащаяся в этой публикации о устройстве, схемах, рекомендациях, приложениях и т.п. предоставляется только для Вашего удобства и может быть заменена при последующих ревизиях данного документа и/или связанных документов.

Вашей ответственностью является проверка актуальности данных.

ZENTEC НЕ ПРЕДОСТАВЛЯЕТ НИКАКИХ ЗАЯВЛЕНИЙ ИЛИ КАКИХ-ЛИБО ГАРАНТИЙ ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ, ПИСЬМЕННЫХ ИЛИ УСТНЫХ, СВЯЗАННЫХ С ДАННОЙ ПУБЛИКА-ЦИЕЙ.

**ZENTEC** не несет никакой ответственности за правильность выбора покупателем цели использования устройства.

# Краткий обзор

**M100** - Программируемый логический контроллер с широкими функциональными возможностями. Контроллер имеет богатый набор периферии, высокое быстродействие и большой объем памяти для пользовательских алгоритмов. Проектирование алгоритмов осуществляется в программном пакете **zWorkbench** с помощью графического языка FBD.

Контроллер выпускается в нескольких модификациях.

#### Области применения контроллера:

- Системы управления фанкойлами;
- Системы управления освещением;
- Системы управления тепловыми завесами с водяным или электрическим теплообменником;
- Системы шагового управления мощными электронагревателями;
- Системы управления теплыми полами;
- Управление вентиляционными агрегатами с электрическим теплообменником (одно- и много ступенчатые);
- Управление вентиляционными агрегатами с водяным теплообменником;
- Управление секциями охлаждения в составе приточных установок или без них;
- Системы ротации кондиционеров.

#### Краткие технические данные:

- Частота процессора 56МГц;
- Минимальное время выполнения программы 100мс;
- Количество программных блоков около 400;
- Питание контроллера (см. табл. 1);
- Потребляемая мощность min 1.2Bт / max 5Bт;
- 8 универсальных входов. Любой вход может быть настроен как цифровой вход для датчиков типа "сухой" контакт, так и в качестве аналогового входа (АЦП 10бит):
  - $\circ$  для датчиков типа NTC10k (погрешность измерения до 0,5С в диапазоне -30C +90C);
  - Первый универсальный вход контроллера может быть программно настроен для измерения сопротивлений в диапазоне 100-500кОм.
- 5 релейных выходов с нагрузкой ЗА 220В;
- 2 аналоговых выхода 0-10B с высокой нагрузочной способностью (до 22 mA на один выход);
- 2 СОМ порта RS-485 без развязки.

Аналоговые выходы контроллера имеют защиту от подачи внешнего постоянного напряжения +/- 40В или переменного напряжения 30В.

Универсальные входы имеют защиту от подачи внешнего постоянного напряжения +/- 40В или переменного напряжения 30В.

Оба порта RS-485 имеют защиту от подачи внешнего постоянного напряжения +/- 40В или переменного напряжения 30В.

# Модификации контроллера М100

**Таблица 1** Сводные параметры модификаций М100

|                                      | M100-2Ax                       | M100-2Bx   |
|--------------------------------------|--------------------------------|------------|
| Тип процессора                       | PIC18F46K22                    |            |
| Общий объем памяти программ,<br>Байт | 22272                          |            |
| ОЗУ, Байт                            | 3072                           |            |
| Рабочая частота, МГц                 | 56                             |            |
| Тип ПЗУ                              | EEPROM                         |            |
| Количество циклов записи ПЗУ         | 100000                         |            |
| RS-485 (Modbus RTU)                  | 2 без развязки                 |            |
| Универсальные входы (NTC10k,<br>Di)  | 8                              |            |
| Дискретные выходы                    | 5, реле 3A 220B                |            |
| Аналоговые выходы                    | 2                              |            |
| Напряжение питания                   | 24B                            | 220B       |
| Род тока                             | Постоянный или перемен-<br>ный | Переменный |
| Потребляемая мощность                | Минимум 1,2Вт. Максимум 5,4Вт  |            |

#### Дополнительные исполнения

#### M100-2x0

ОЕМ версия контроллера. Комплектуется несъемными клеммами. Корпус отсутствует.

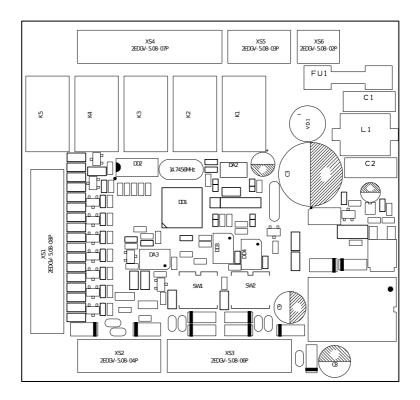
#### M100-2x1

Базовая версия контроллера. Комплектуется съемными клеммами. Корпус отсутствует.

#### M100-2x2

Базовая версия контроллера. Комплектуется съемными клеммами. Поставляется в пластиковом корпусе с возможностью крепления на DIN рельс.

# Технические данные


# **Таблица 2** Технические данные M100

| 2 HONTHUNGENIO HONOLOTHU                                  | технические данные мтоо                                                                                                                                                            |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Электрические параметры                                   | C 1                                                                                                                                                                                |  |
| Напряжение питания                                        | см. табл. 1                                                                                                                                                                        |  |
| Род тока                                                  | см. табл. 1                                                                                                                                                                        |  |
| Потребляемая мощность                                     | см. табл. 1                                                                                                                                                                        |  |
| Тип вторичного преобразователя напряжения                 | Импульсный трансформаторный.                                                                                                                                                       |  |
| Прерывание напряжения питания                             | 5мс                                                                                                                                                                                |  |
| Вторичное напряжение для питания внешней панели оператора | 12В, 100мА, постоянного тока                                                                                                                                                       |  |
| Устойчивость к перенапряжению                             | $\pm$ 0,4 кВ (для контроллеров с питанием 220В)                                                                                                                                    |  |
| Устойчивость к наносекундным помехам                      | ± 1 κB                                                                                                                                                                             |  |
| Устойчивость к статическому электриче-<br>ству            | 4 кВ                                                                                                                                                                               |  |
| Устойчивость к пробою на корпус                           | 6 кВ                                                                                                                                                                               |  |
| Встроенные порты RS-485                                   |                                                                                                                                                                                    |  |
| Защита от подачи напряжения                               | Встроенные TVS и автоматические предохранители. Максимальное напряжение ±40В.                                                                                                      |  |
| Защита от статики                                         | Дренажные цепи.                                                                                                                                                                    |  |
| Встроенный протокол                                       | Modbus RTU.                                                                                                                                                                        |  |
| Встроенная подтяжка                                       | Отключаемая.                                                                                                                                                                       |  |
| Терминатор                                                | Внутренний отключаемый, 120Ω                                                                                                                                                       |  |
| Универсальные входы                                       |                                                                                                                                                                                    |  |
| Режим работы                                              | Программно переключаемый сигнал: 1. Сухой / Мокрый контакт, постоянное напряжение до 40В. 2. NTC10k (АЦП 10бит). 3. Вход Uin1 может работать в режиме высокоомного измерения 100kΩ |  |
| Гальваническая развязка                                   | Без развязки.                                                                                                                                                                      |  |
| Защита от статики                                         | Специализированные диодные сборки.                                                                                                                                                 |  |
| Защита от подачи встречного напряжения                    | 1. Неопределенно долго до 40B<br>2. Кратковременно до 70B                                                                                                                          |  |
| Дискретные выходы                                         |                                                                                                                                                                                    |  |
| Тип выхода                                                | Реле.                                                                                                                                                                              |  |
| Максимальный ток на один канал                            | 3A / 220B                                                                                                                                                                          |  |
| Защита от перегрузки                                      | Необходим внешний быстродействующий предохранитель. Не входит в комплект поставки.                                                                                                 |  |

# **Таблица 2** Технические данные М100 продолжение

|                                          | продолжение                                               |
|------------------------------------------|-----------------------------------------------------------|
| Аналоговые выходы                        |                                                           |
| Тип выхода                               | 0-10В 10бит.                                              |
| Максимальный ток на один канал           | 25мА                                                      |
| Гальваническая развязка                  | Без развязки.                                             |
| Защита от подачи встречного напряжения   | 1. Неопределенно долго до 40B<br>2. Кратковременно до 70B |
| Защита от перегрузки                     | Встроенный автоматический предохранитель.                 |
| Прочие характеристики                    |                                                           |
| Минимальное время выполнения программы   | 100мс                                                     |
| Количество программных блоков            | Около 400. Зависит от пользовательской программы.         |
| Условия эксплуатации                     |                                                           |
| Температура окружающего воздуха рабочая  | -30+55°C                                                  |
| Температура окружающего воздуха хранения | -40+65°C                                                  |
| Влажность окружающего воздуха            | 1090% без конденсации                                     |
| Вибростойкость                           | 15Гц в любом направлении. Ускорение 2G.                   |
| 22UUT2 DO ID                             | 00 для бескорпусного варианта исполнения                  |
| Защита по ІР                             | 20 для контроллера в корпусе                              |
| Материал корпуса                         | ABS                                                       |
|                                          |                                                           |

#### Расположение элементов



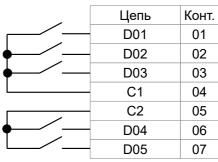
#### Индикаторы:

- HL1 Обмен порта СОМО
- HL2 Обмен порта COM1
- HL3 Питание контроллера
- HL4 Ошибка

#### Терминалы:

- XS1 Универсальные входы
- XS2 Аналоговые выходы
- XS3 Порт COM0 и COM1, питание внешнего пульта управления
- XS4 Релейные выходы
- XS5 Вспомогательный терминал
- XS6 Питание контроллера

# Схема терминалов


# XS1

| Конт. | Цепь |
|-------|------|
| 01    | Uin1 |
| 02    | Uin2 |
| 03    | Uin3 |
| 04    | Uin4 |
| 05    | Uin5 |
| 06    | Uin6 |
| 07    | Uin7 |
| 80    | Uin8 |



| XS2            |                                 |         |
|----------------|---------------------------------|---------|
| Конт.          | Цепь                            |         |
| 01             | GND                             |         |
| 02             | Aout1                           |         |
| 03             | Aout2                           |         |
| 04             | GND                             | <b></b> |
| XS3            |                                 |         |
| Конт.          | Цепь                            |         |
| Конт.<br>01    | Цепь<br>СОМ1 (RA1)              |         |
|                | · ·                             |         |
| 01             | COM1 (RA1)                      |         |
| 01             | COM1 (RA1)<br>COM1 (RB1)        |         |
| 01<br>02<br>03 | COM1 (RA1)<br>COM1 (RB1)<br>GND |         |

# XS4



## XS5

|   | Цепь | Конт. |
|---|------|-------|
|   | Т    | 01    |
| • | Т    | 02    |
|   | Т    | 03    |

#### XS6

| Цепь | Конт. |
|------|-------|
| U    | 01    |
| U    | 02    |

#### Работа в сети.

Для реализации сетевых функций, контроллер M100 необходимо объединить с другими контроллерами по интерфейсу RS-485. Используемый протокол — Modbus RTU. Топология сети — стандартная для сетей RS-485, линейная без ответвлений.

Любой из двух портов M100 может быть настроен как **Master** или как **Slave**. Порт COM0 является основным портом — через этот порт происходит обновление или смена микропрограммы контроллера (firmware).

#### Подтяжка линии (смещение).

Обмен между контроллерами организован так, что их приемники постоянно «слушают шину».

В те моменты, когда нет передачи, шина наиболее чувствительна к помехам. Для подавления помех в линии необходимо подключить смещающие (подтягивающие) резисторы **pullup** и **pulldown**.

Смещающие резисторы в контроллерах М100 рассчитаны таким образом, чтобы обеспечивать необходимым смещением шину данных около 30 метров.

Обычно, в одной линии достаточно одного узла с резисторами смещения.

Для подключения/отключения резисторов предназначены переключатели **S1** и **S2**. Клеммы подключения интерфейса обозначены как RAO /RBO – COMO и RA1 / RB1 – COM1.

Резисторы pullup и pulldown можно подключать и отключать только при полностью выключенной сети (питание всех контроллеров-участников сети должно быть отключено).





- Для COMO S1/2 и S1/3
- Для COM1 S2/2 и S2/3

Резисторы для каждого из портов включаются по парам.

Например, если для порта СОМО нужно установить смещение, то:

- 1. Отключите питание всех контроллеров;
- 2. Установите секции 2 и 3 переключателя S1 в положение ON.

#### Встроенный терминатор.

Для каждого порта в M100 есть встроенный терминатор  $120\Omega$  Подключается/отключается терминатор переключателями S1 и S2.

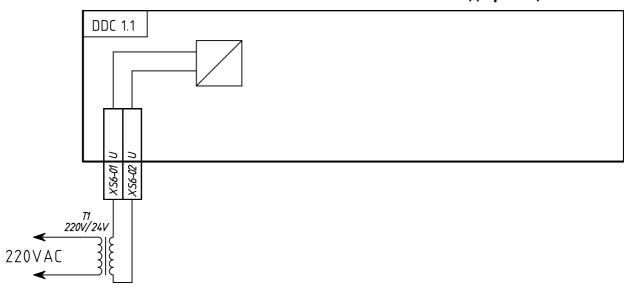




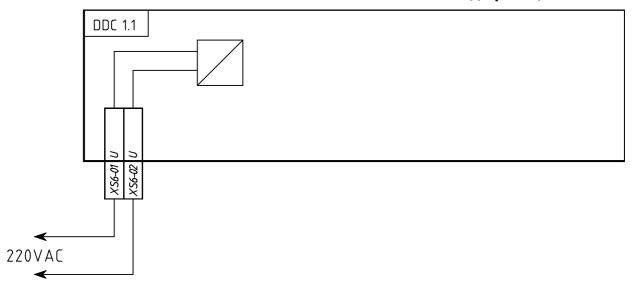
- Для СОМО S1/1
- Для COM1 S2/1

# Аварийный светодиод

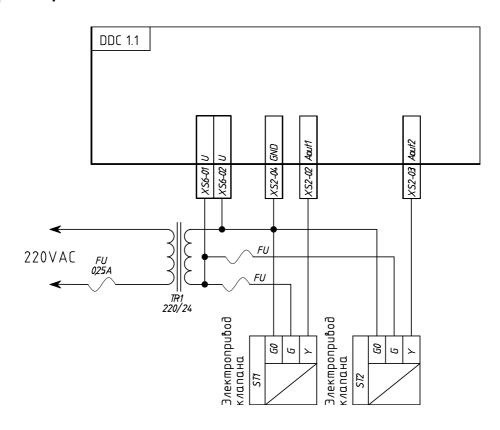
Контроллер М100 оборудован аварийным светодиодом.


Основное назначение светодиода — сигнализация внутрисистемных аварий.

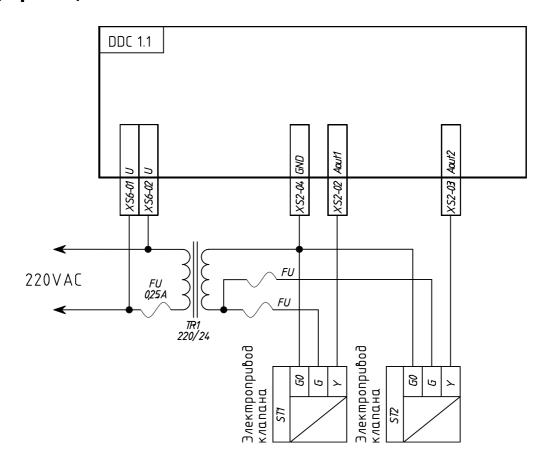
Так же светодиод можно использовать в пользовательском алгоритме.


Конфигурация светодиода осуществляется в пакете программирования **zWorkbench**.

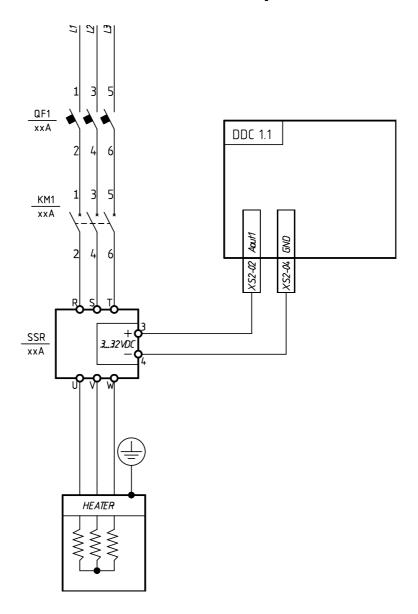
# Схема подачи питания на контроллер


## Модификация М100-2Ах




## Модификация М100-2Вх




# Схема подключения аналоговых выходов в режиме пропорционального управления напряжением от 0В до 10В. Модификация М100-2Ах



# Схема подключения аналоговых выходов в режиме пропорционального управления напряжением от 0В до 10В. Модификация M100-2Bx

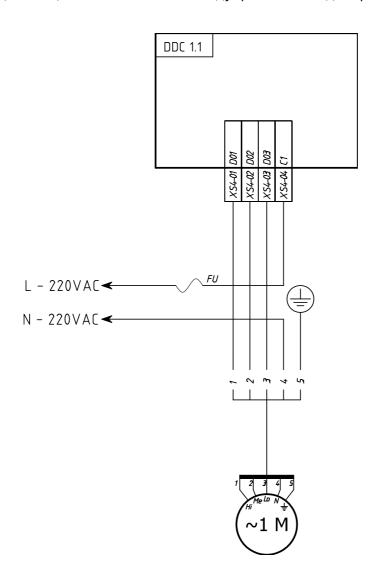


# Схема подключения аналоговых выходов в режиме ШИМ



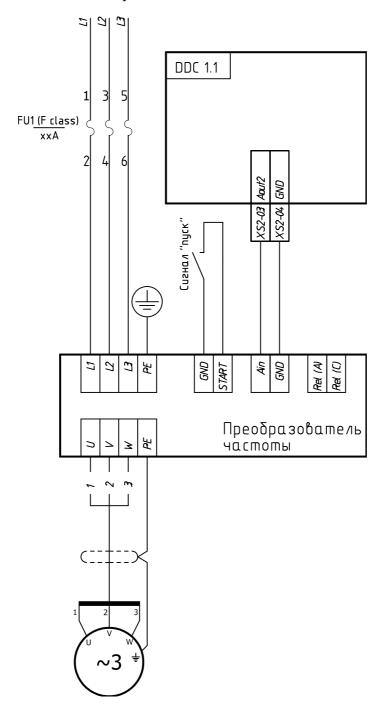
Выходы Aout1 и Aout2 могут быть настроены как для работы в режиме ШИМ, так и в пропорциональном режиме. Настройки каждого выхода независимые.

### Схема подключения дискретных выходов


Дискретные выходы контроллера разбиты на две групы:

- 1. Группа1. Выходы, обозначенные D01, D02 и D03. Имеют общий провод и могут коммутировать напряжение, подключенное к контакту C1.
- 2. Группа2. Выходы, обозначенные D04 и D05. Имеют общий провод и могут коммутировать напряжение, подключенное к контакту C2.

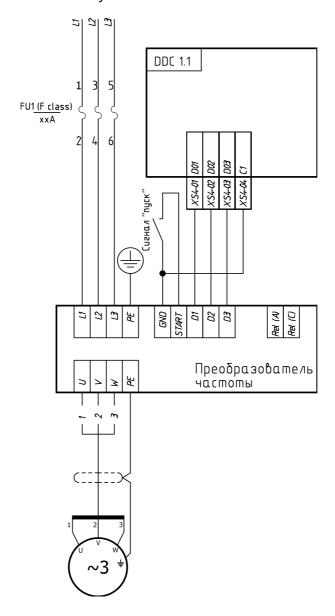
#### Некоторые примеры схем подключения выходов:


Стандартная схема подключения двигателя многоскоростного вентилятора фанкойла или тепловой завесы.

При подключении двигателя вентилятора по данной схеме, рекомендуется использовать помехоподавляющие RC цепи, включенные между фазой и каждым релейным выходом.



# Подключение преобразователя частоты.


Управление преобразователем частоты с помощью аналогового сигнала 0-10B. Входы преобразователя показаны условно.



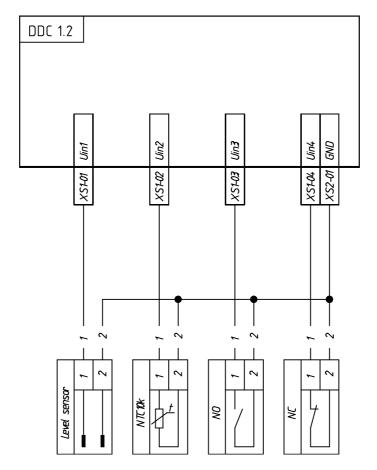
#### Подключение преобразователя частоты.

Управление преобразователем частоты в дискретном режиме (можно реализовать до семи скоростей).

Входы преобразователя показаны условно.



### Подключение универсальных входов


Контроллер М100 имеет восемь универсальных входов.

Каждый вход может быть настроен на работу с температурными датчиками типа NTC10k или в качестве дискретного входа для сухих контактов.

Конфигурация входов осуществляется в пакете программирования zWorkbench.

Универсальный вход Uin1 можно настроить в режиме высокоомного входа. Данную настройку удобно использовать совместно с контактным датчиком уровня воды (например, датчиком уровня конденсата в поддоне фанкойла).

Типовые схемы подключения универсальных входов.



# Гарантийные обязательства.

- 1. Срок службы (годности) контроллера **М100** (далее по тексту **Оборудование**) составляет 10 (десять) лет со дня производства. Этот срок является временем в течение которого потребитель данного **Оборудования** может безопасно им пользоваться при условии соблюдения руководства по эксплуатации и проводя необходимое обслуживание.
- 2. Срок службы исчисляется с момента производства *Оборудования* на заводе-изготовителе.
- 3. Производитель гарантирует отсутствие дефектов и неисправностей **Оборудования** и несет ответственность по гарантийным обязательствам в соответствии с законодательством Российской Федерации.
- 4. Гарантийный срок эксплуатации **Оборудования** составляет **24** (**двадцать четыре**) месяца со дня отгрузки покупателю.
- 5. Гарантийный срок исчисляется с момента отгрузки Оборудования потребителю.
- 6. Вне зависимости от даты продажи, гарантийный срок не может превышать 2,5 (два с половиной) года с даты производства *Оборудования*. Дата производства *Оборудования* наносится с помощью стикера на *блок реле или на печатную плату*.
- 7. В течение гарантийного срока Производитель обязуется бесплатно устранить дефекты **Оборудования** путем его ремонта или замены на аналогичное при условии, что дефект возник по вине Производителя. **Оборудование**, предоставляемое для замены, может быть как новым, так и восстановленным, но в любом случае Производитель гарантирует, что его характеристики будут не хуже, чем у заменяемого устройства.
- 8. Выполнение Производителем гарантийных обязательств по ремонту вышедшего из строя оборудования влечет за собой увеличение гарантийного срока на время ремонта оборудования
- 9. Гарантийный ремонт осуществляется на территории *Сервисного центра* или официального дилера. Доставка неисправного оборудования к месту диагностики и ремонта осуществляется за счет покупателя.
- 10. Ни при каких обстоятельствах Производитель и представитель Производителя не несет ответственности за любые убытки, включая потерю прибыли и другие случайные, последовательные или косвенные убытки, возникшие вследствие некорректных действий по монтажу, сопровождению, эксплуатации либо связанных с производительностью, выходом из строя или временной неработоспособностью *Оборудования*.
- 11. Производитель не несет ответственности в случае, если тестирование **Оборудования** показало, что заявленный дефект отсутствует, либо он возник вследствие нарушения правил монтажа или условий эксплуатации, а также любых действий, связанных с попытками добиться от устройства выполнения функций, не заявленных Производителем.
- 12. Условия гарантии не предусматривают профилактику *Оборудования* силами и за счет Производителя.
- 13. Производитель не несет ответственности за дефекты и неисправности **Оборудования**, возникшие в результате:
  - несоблюдения правил транспортировки, хранения, эксплуатации или в случае неправильной установки;
  - неправильных действий, использования Оборудования не по назначению, несоблюдения настоящей Инструкции;
  - механических воздействий, действия обстоятельств непреодолимой силы (таких как пожар, наводнение, землетрясение и др.) или влияния случайных внешних факторов (и пр.);
  - бросков напряжения в электрической сети;
  - неисправностей, вызванных ремонтом или модификацией Оборудования лицами, не уполномоченными на это Производителем;
  - повреждений, вызванных попаданием на поверхность печатной платы **Оборудования** посторонних предметов, веществ, жидкостей, насекомых и т.д.;
  - внешних дефектов (явные механические повреждения, трещины, сколы печатной платы, сломанные контакты разъемов).